
Lecture 6 

 Electromotive Force & Continuity 
Equation  
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Lecture 6 

Electromotive Force 

• Steady current flow requires a closed circuit. 

• Electrostatic fields produced by stationary charges are 
conservative.  Thus, they cannot by themselves maintain a 
steady current flow. 
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Lecture 6 

Electromotive Force (Cont’d) 

• The current I must 
be zero since the 
electrons cannot 
gain back the energy 
they lose in traveling 
through the resistor. 
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Lecture 6 

Electromotive Force (Cont’d) 

• To maintain a steady 
current, there must 
be an element in the 
circuit wherein the 
potential rises along 
the direction of the 
current. 
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Lecture 6 

Conservation of Charge 

• Electric charges can neither be created nor destroyed. 

• Since current is the flow of charge and charge is 
conserved, there must be a relationship between the 
current flow out of a region and the rate of change of the 
charge contained within the region. 
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Lecture 6 

Conservation of Charge (Cont’d) 

• Consider a volume V 
bounded by a closed 
surface S in a 
homogeneous 
medium of 
permittivity e and 
conductivity  
containing charge 
density qev. 
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Lecture 6 

Conservation of Charge (Cont’d) 

• The net current 
leaving V through S 
must be equal to the 
time rate of 
decrease of the total 
charge within V, i.e., 
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Lecture 6 

Conservation of Charge 
(Cont’d) 
• The net current leaving the region is given by 

 

• The total charge enclosed within the region is given by 
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Lecture 6 

Conservation of Charge 
(Cont’d) 
• Hence, we have 
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Lecture 6 

Continuity Equation 

• Using the divergence theorem, we have 

 

 

• We also have 
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Lecture 6 

Continuity Equation (Cont’d) 

• Thus, 

 

• Since the above relation must be true for any and all regions, 
we have  
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Lecture 6 

Continuity Equation (Cont’d) 

• For steady currents, 

 

• Thus,  

1
2

 

0




t



0 J

J is a solenoidal vector field. 



Lecture 6 

Continuity Equation in Terms of 
Electric Field 
• Ohm’s law in a conducting medium states 

 
 

• For a homogeneous medium 
 

• But from Gauss’s law, 
 
 

• Therefore, the volume charge density, , must be zero 
in a homogeneous conducting medium 
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